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a b s t r a c t

The present paper gives an analysis of fully developed channel flow at Reynolds number of
Re ¼ usd=m ¼ 4000 based on the friction velocity, us, and half the channel height, d. Since the Reynolds
number is high, the LES is coupled to a URANS model near the wall (hybrid LES–RANS) which acts as a
wall model. It it found that the energy spectra is not a good measure of LES resolution; neither is the ratio
of the resolved turbulent kinetic energy to the total one (i.e. resolved plus modelled turbulent kinetic
energy). It is suggested that two-point correlations are the best measures for estimating LES resolution.
It is commonly assumed that SGS dissipation takes place at high wavenumbers. Energy spectra of the
fluctuating velocity gradients show that this is not true; the major part of the SGS dissipation takes place
at low to midrange wavenumbers. Furthermore, the energy spectra of the fluctuating velocity gradients
reveals that the accuracy of the predicted velocity gradients at the highest resolved wavenumbers is very
poor.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction RANS, the region near the walls is treated with Unsteady Rey-
In wall-bounded Direct Numerical Simulations (DNS) and Large
Eddy Simulations (LES) numerical experiments were carried out to
determine the minimum required resolution to obtain accurate re-
sults (Moin and Kim, 1982; Piomelli, 1993; Piomelli and Chasnov,
1996; Moser et al., 1999; Hoyas and Jiménez, 2006). The grid res-
olution in DNS and wall-resolved LES is dictated by the necessity
of resolving the energy-generating process high-speed in-rushes
and low-speed ejections (Robinson, 1991) in the viscous sub-layer
and the buffer layer, often called the streak process. Since this pro-
cess takes place in the viscous-dominating near-wall region, the
required grid resolution must be expressed in inner variables, i.e.
viscous units. In LES, the required grid resolution is
Dxþ ’ 100; yþ ’ 1 (wall-adjacent cell centers) and Dzþ ’ 30 where
x; y; z denote the streamwise, wall-normal and spanwise directions,
respectively. Since a viscous length unit compared to the boundary
layer thickness becomes smaller the higher the Reynolds number,
the simulation times for DNS and wall-resolved LES at high Rey-
nolds numbers become prohibitively high.

In the past ten years much research has been dedicated to the
task of finding wall models that circumvent the requirement of
defining the minimum near-wall cell size using inner variables.
Spalart and his co-worker first proposed Detached-Eddy Simula-
tions (Spalart et al., 1997; Travin et al., 2000), abbreviated as
DES; later, different variants of hybrid LES/RANS models were pro-
posed (Davidson and Peng, 2003; Temmerman et al., 2005; Tucker
and Davidson, 2004; Hamba, 2003). In both DES and hybrid LES/
ll rights reserved.
nolds-Averaged Navier–Stokes (URANS) and the outer region is
treated by LES; the main difference is that, in DES, the entire
boundary layer is treated with URANS whereas, in hybrid LES/
RANS, the interface between URANS and LES is located in the inner
part of the logarithmic region.

Another way to model the near-wall region is to use two-layer
models (Balaras et al., 1996; Cabot, 1995; Cabot and Moin, 1999;
Wang and Moin, 2002), also called ‘‘thin boundary layer equa-
tions”. Here, the first node in the LES simulations is located –
as when using wall functions – in the log-region. A new fine
near-wall mesh is then created covering the wall-adjacent LES
cell. Good results have been obtained for flow around a smooth
three-dimensional hill (Tessicini et al., 2007), which is a fairly
complex flow. Even wall functions—based on the instantaneous
log-law—were found to give good results for this flow (Tessicini
et al., 2007).

Assuming that the near-wall region is modelled using, for
example, one of the approaches mentioned above, the question
arises: how fine does the mesh need to be in the LES region?
And, how do we, after having made an LES (assuming that there
are no experimental data with which to compare), verify that the
resolution was good enough? This is the focus of the present paper.

There are different ways to estimate the resolution of LES data.
The first measure is probably to compare the modelled Reynolds
stresses with the resolved ones. The smaller the ratio, the better
the resolution. Another, similar way, is to compare the resolved
turbulent kinetic energy to the modelled one. The energy spectra
are commonly computed to find out whether they exhibit a �5/3
range and if they do the flow is considered to be well resolved. An-
other measure of the resolution may be to look at the two-point
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Table 1
Turbulent viscosities and turbulent length scales in the URANS and LES regions. n
denotes the distance to the nearest wall. D ¼ ðdVÞ1=3.

URANS region LES region

‘ jc�3=4
l n 1� expð�0:2k1=2n=mÞ

h i
‘ ¼ D

mT jc1=4
l k1=2n 1� expð�0:014k1=2n=mÞ

h i
0:07k1=2

‘

Ce 1:0 1:05
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correlations to identify, for example, the ratio of the integral length
scale to the cell size. A less common approach is to compare the
SGS (i.e. modelled) dissipation due to fluctuating resolved strain-
rates to that due to resolved or time-averaged strain-rates. In stea-
dy RANS, all SGS dissipation takes place due to time-averaged
strain-rates whereas, in a well-resolved LES, most of the SGS dissi-
pation occurs due to resolved fluctuations. It is commonly assumed
that the SGS dissipation takes place at the highest resolved wave-
numbers. This can be verified or disproved by making energy spec-
tra of the SGS dissipation to find the wavenumbers at which the
SGS dissipation does in fact take place.

The approaches mentioned above are used in the present paper
to evaluate how relevant they are in estimating the resolution of
LES simulations of fully developed channel flow. The Reynolds
number is 4000 based on the friction velocity and the half-height
of the channel. Five different resolutions are used. In order to be
able to carry out LES at high Reynolds number, the near-wall re-
gion is covered by a wall model. In this work we have chosen to
use hybrid LES/RANS.

The paper is organized as follows: The first three sections pres-
ent the equations, the turbulence model and the numerical meth-
od. The following section presents and analyzes the results using
different resolutions. Conclusions are given in the final section.

2. Numerical details

2.1. The momentum equations

The Navier–Stokes equations with an added turbulent/SGS vis-
cosity read

@�ui

@t
þ @

@xj
ð�ui�ujÞ ¼ d1i �

1
q
@�p
@xi
þ @

@xj
ðmþ mTÞ

@�ui

@xj

� �
@�ui

@xi
¼ 0

ð1Þ

where mT ¼ mt (mt denotes the turbulent RANS viscosity) close to the
wall for y 6 yml, otherwise mT ¼ mSGS. The location at which the
switch is made from URANS to LES is called the interface and is lo-
cated at yml from each wall, see Fig. 1. The turbulent viscosity, mT , is
computed from an algebraic turbulent length scale, see Table 1, and
a transport equation is solved for kT , see below. The density is set to
one in all simulations. A driving constant pressure gradient, d1i, is
included in the streamwise momentum equation.

2.2. Hybrid LES–RANS

A one-equation model is employed in both the URANS region
and the LES region and reads
Fig. 1. The LES and URANS regions. The interface is located at yþ ¼ yþml and the
number of cells in the URANS region in the wall-normal direction is jml .
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where mT ¼ ck1=2
‘. In the inner region ðy 6 ymlÞ kT corresponds to

RANS turbulent kinetic energy, k; in the outer region (y > yml) it cor-
responds to subgrid-scale kinetic turbulent energy, kSGS. The coeffi-
cients are different in the two regions, see Table 1. No special
treatment is applied in the equations at the matching plane except
that the form of the turbulent viscosity and the turbulent length
scale are different in the two regions.

2.3. The numerical method

An incompressible, finite volume code is used (Davidson and
Peng, 2003). For space discretization, central differencing is used
for all terms except the convection term in the kT equation, for
which the hybrid central/upwind scheme is employed. The
Crank–Nicolson scheme is used for time discretization of all equa-
tions. The numerical procedure is based on an implicit, fractional
step technique with a multigrid pressure Poisson solver (Emvin,
1997) and a non-staggered grid arrangement.

3. Results

The flow was computed for Reynolds number Res ¼ usd=m ¼
4000 (d denotes the half width of the channel), and five different
computational grids are used, see Table 2. The number of cells in
the y direction is 80 with a constant geometric stretching of 15%.
This gives a smallest and largest cell height of Dyþmin ¼ 2:2 and
Dyþmax ¼ 520, respectively. The grid spacing in the wall-parallel
plane in viscous units is ðDxþ;DzþÞ ¼ ð200—800; 100—400Þ. The ex-
tent of the domain in the x and z directions is 6.4 and 3.2, respec-
tively, for all cases. The matching line is chosen along a fixed grid
line at yþ ¼ 125ðy ¼ 0:0313Þ so that 16 cells are located in the UR-
ANS region at each wall. It should be mentioned that in the present
work the matching line between the URANS and the LES regions is
located rather close to the wall. If the matching line were located
as in DES (i.e. minð0:65Dm; yÞ, Dm ¼ maxðDx;Dy;DzÞÞ, the agree-
ment would have been much better for all five cases. However,
the object of this work was not to obtain the best possible results,
but to compare different ways of estimating the resolution.

The velocity profiles are shown in Fig. 2. It can be seen that the
Baseline case over-predicts the velocity in the LES region. When
the grid is refined in the spanwise direction (Case 0:5Dz) much
better agreement with the log-law is obtained. When the grid is
Table 2
Test cases.

Case Dx Dz Nx Nz Dxþ Dzþ d=Dx d=Dz

Baseline 0.1 0.05 64 64 400 200 10 20
0:5Dx 0.05 0.05 128 64 200 200 20 20
0:5Dz 0.1 0.025 64 128 400 100 10 40
2Dx 0.2 0.05 32 64 800 200 5 20
2Dz 0.1 0.1 64 32 400 400 10 10
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Fig. 3. Resolved shear stress. For legend, see caption in Fig. 2.
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coarsened in either the streamwise (Case 2Dx) or the spanwise
direction (Case 2Dz), the agreement with the log-law deteriorates
as expected. It is somewhat surprising that a grid refinement in
the streamwise direction (Case 0:5Dx) gives worse agreement than
the Baseline case. It turns out that the smaller SGS length scale is
the main reason for this; if the SGS length for Case 0:5Dx is set
equal to that in the Baseline case, the velocity in the outer region
decreases compared to the original Case 0:5Dx (not shown). A grid
with ð0:5Dx;0:5DzÞ gives even better agreement with the log law
(not shown). We argue that the large discrepancy in the outer re-
gion for Case 0:5Dx is a turbulence model issue. When going from
the Baseline case to Case 0:5Dx, the SGS length scale is reduced by a
factor of ð1=2Þ1=3 and the SGS shear stress will as a consequence
also decrease. Since the total shear shear stress must obey the rela-
tion y� 1 (dictated by the time-averaged streamwise momentum
equation), the decrease in SGS shear stress should be compensated
by a corresponding increase in the resolved shear stress, jhu0v 0ij.
The increase of the magnitude of the resolved shear stress is facil-
itated by lower SGS dissipation because of smaller SGS viscosity.
The resolved shear stress, jhu0v 0ij, does indeed increase in the inner
region when going from the Baseline case to Case 0:5Dx, see Fig. 3.
However, in the outer region – in which the velocity gradient is
much smaller – the flow is initially not able to increase the magni-
tude of the resolved shear stress. Hence, in order to satisfy the lin-
ear law of the total shear, the magnitude of the SGS shear stress
must increase and the flow accomplishes this by increasing the
velocity gradient for yþ > 1000, see Fig. 2. Careful inspection of
Fig. 3 reveals that also the magnitude of the resolved shear stress
for Case 0:5Dx is slightly larger (for 1500 < yþ < 3000) than for
the Baseline case. The question then arises why the agreement of
the velocity profile with the log law does not deteriorate when
the grid is refined in the spanwise direction (Case 0:5Dz). The an-
swer is that the refinement in the spanwise direction allows addi-
tional turbulence to be resolved (the peak of jhu0v 0ij is larger for
Case 0:5Dz than for Case 0:5Dx) which compensates for the de-
crease in the SGS shear stress. The discussion above indicates that
it could be interesting to develop new SGS models in which the SGS
length scale is sensitized to the magnitude of the resolved strain,
ð2�sij�sijÞ1=2; if the resolved strain is large, the length scale can be ta-
ken as D, but if it is small the length scale should maybe be larger.

Figs. 4 and 5 present the streamwise and wall-normal resolved
fluctuations, respectively. As can be seen, u2

rms and v2
rms increases

and decreases, respectively, as the grid is coarsened. The time-
averaged streamwise momentum equation requires that the total
shear stress must satisfy the relation y� 1, see Fig. 3. When the
grid is coarsened, the resolved part of the total shear stress
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Fig. 2. U velocities. ——: Baseline; - - -: 0:5Dx; -�-�: 0:5Dz; �: 2Dx; +: 2Dz; h:
Uþ ¼ ðln yþÞ=0:4þ 5:2.
decreases for yþK 1000, mainly because the turbulent viscosity
increases with grid coarsening, see Fig. 6. Furthermore, the non-
linear interaction is weakened so that, in the region of maximum
jhu0v 0ij (i.e. 200 < yþ < 600), the correlation between the stream-
wise and wall-normal resolved fluctuations is diminished, see
Fig. 7 (this is also seen in coarse DNS (Davidson and Billson,
2006)). Initially, this results in too small a resolved shear stress.
The equations respond by increasing the resolved fluctuations by
increasing the bulk velocity and hence the velocity gradient,
@�u=@y, which is the main agent for producing resolved turbulence.
The bulk velocity, and hence the resolved fluctuations, are in-
creased until the resolved shear stress is large enough so that the
total shear stress satisfies the linear relation. Because of the damp-
ing effect of the wall on v 0, the equations increase u0 until the linear
relation is obtained. This explains the large values of u2

rms in Fig. 4
for the coarse resolutions. It should be stressed that the process
of increasing the resolved fluctuations until the total shear stress
satisfies the linear relation y� 1 does not occur in a general flow
case with an inlet and outlet (i.e. a flow case with no prescribed
driving pressure gradient). In a general flow case, the magnitude
of the resolved shear stresses will simply remain too small.

The spanwise fluctuations increase when the grid is coarsened
in the spanwise direction, whereas they decrease upon coarsening
in the streamwise direction, see Fig. 8. They increase when the grid
is refined. Furthermore, the location of the peak is not affected nei-
ther by grid coarsening nor grid refinement. This behaviour is
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Fig. 4. Resolved fluctuations in the streamwise direction. For legend, see caption in
Fig. 2.
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Fig. 5. Resolved fluctuations in the wall-normal direction. For legend, see caption in
Fig. 2.
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Fig. 6. Turbulent viscosity. For legend, see caption in Fig. 2.
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Fig. 7. The correlation coefficient, Cuv ¼ hu0v 0i=ðurmsv rmsÞ: For legend, see caption in
Fig. 2.
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Fig. 8. Resolved fluctuations in the spanwise direction. For legend, see caption in
Fig. 2.
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completely different from that of the wall-normal stresses. The dif-
ferent behavior of the wall-normal fluctuations and the spanwise
fluctuations is explained by Fig. 9, where the pressure–gradient–
velocity terms are presented; these terms are the main source
terms in the transport equations of v2

rms and w2
rms. It can be seen

that the term in the v2
rms equation—like v2

rms itself—decreases/in-
creases in the LES region for yþ < 1000 when the grid is coars-
ened/refined and that the peak of the source term moves away
from the wall. The term in the w2

rms equation, however, shows a dif-
ferent behavior when the grid is coarsened in the spanwise or the
streamwise direction: it increases in the former case whereas it in-
creases in the latter case. When the grid is refined, the source term
increases. This agrees with the behavior of w2

rms, see Fig. 8. A con-
clusion from the discussion above is that it is crucial to properly re-
solve the interaction between fluctuating resolved velocities and
pressure.

The resolved turbulent kinetic energy is presented in Fig. 10a,
and since it is dominated by the streamwise fluctuations, its
behavior is similar to that of u2

rms. Pope (2004) suggests that when
80% of the turbulent kinetic energy is resolved, i.e.

c ¼ kres

< kT > þkres
> 0:8; kres ¼

1
2
hu0iu0ii; ð2Þ

the LES can be consider to be well-resolved. Fig. 10b presents this
ratio and as can be seen it is, in the LES region, larger than 85%
for all grids. Hence this quantity does not seem to be a good mea-
sure of the resolution.

Figs. 11–13 present the streamwise and spanwise two-point
correlations, which are defined as Buuðx̂Þ ¼ hu0ðxÞu0ðx� x̂Þi,
Bwwðx̂Þ ¼ hw0ðxÞw0ðx� x̂Þi and BwwðẑÞ ¼ hw0ðzÞw0ðz� ẑÞi, respec-
tively. The two-point correlations are all presented for
yþ ’ 440 ðy ¼ 0:11Þ; they do not vary much across the channel.
The two-point correlations are normalized with u2

rms and w2
rms,

respectively. In Figs. 11 and 12, the two-point correlations increase
when the grid is coarsened (Cases 2Dx and 2Dz) because the smal-
ler scales are not resolved; for these coarse resolutions the stream-
wise two-point correlations are dominated by the ‘‘superstreaks”
(Piomelli et al., 2003; Keating and Piomelli, 2006). When the grid
is refined (Cases 0:5Dx and 0:5Dz), the two-point correlations de-
crease, as expected. For Case 2Dx, the two-point correlation formed
with u0 (Fig. 11) falls down to 0.3 within four cells. In the spanwise
direction it is even worse: for Case 2Dz the two-point correlation
goes to zero within three cells (Fig. 13). The reason is that the grid
is so coarse that the non-linear process of generating turbulence
cannot be sustained. This is a clear indication that the resolution
is too poor for Cases 2Dx and 2Dz.

Figs. 14 and 15 present the one-dimensional energy spectra
EwwðkxÞ and EuuðkxÞ. The smallest wavenumber is jx;min ¼
2p=xmax ¼ 2p=6:4 ¼ 0:98. The largest wavenumber included in
the plot is jx;max ¼ 2p=2Dx, which means that two cells are re-
quired to resolve a wavelength. For the Baseline case, for example,
this gives jx;max ¼ p=0:1 ¼ 31. The energy spectrum EwwðkxÞ ¼ Ŵ2,
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for example, is computed by the DFT (Discrete Fourier Transform)
of w0

ŴðkxÞ ¼
1

Nx

XNx

n¼1

w0ðnÞ cos
2pðn� 1Þðkx � 1Þ

Nx

� ��

� i sin
2pðn� 1Þðkx � 1Þ

Nx

� ��
ð3Þ

where Ŵ are the complex Fourier coefficients of w0 and i2 ¼ �1; the
normalized streamwise coordinate appears at the right side as
ðn� 1Þ=Nx ¼ x=xmax. The w2
rms can be retrieved by summing the

square of the real and imaginary parts of Ŵ , i.e.

w2
rms ¼

XNx

n¼1

ðReðŴðkxÞÞÞ2 þ ðImðŴðkxÞÞÞ2 ð4Þ

The energy spectra are all presented for yþ ’ 440 ðy ¼ 0:11Þ
but, when plotted in log–log as in Figs. 14 and 15, they show the
same behavior across the channel, the main difference being that
they are shifted along the Eww and Euu axes as w2

rms and u2
rms vary

across the channel. For comparison, a slope of ‘‘�1” is included in
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Fig. 16. Energy spectra EwwðkzÞ. y ¼ 0:11. The thick dashed line shows �5/3 slope.
For legend, see caption in Fig. 2.
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the figures. For high wavenumbers (kx > 7 for Eww and kx > 10 for
Euu), the streamwise energy spectra for the Case 2Dx exhibits a
clear ‘‘dissipation” range (i.e. a steeper slope than �5/3). For the
other cases the dissipation range starts at higher wavenumbers.
If the energy spectra had been obtained from DNS or experiments,
it would indeed have been a dissipation range but, in the present
case, we are using a turbulence model and hence what is seen in
the energy spectra is an SGS dissipation range.

Fig. 16 shows the spanwise energy spectra of the spanwise fluc-
tuations. A line with a �5/3 slope is included for comparison. As
can be seen, no �5/3 range exists. The energy spectra for all cases
show a tendency of pile-up of energy in the small scales. This phe-
nomenon is present across the channel.

The spanwise energy spectra presented, Fig. 16, do not actually
give much guidance as to whether the resolution is sufficient. With
an effort, one could find a �5/3 range for the Baseline case, Cases
0:5Dx and 0:5Dz, indicating that these resolutions all are sufficient.
But from the two-point correlations in Fig. 13 we find that the larg-
est scales are covered by 4, 4 and 8 cells, respectively. Only Case
0:5Dz could be considered to be sufficient. The streamwise energy
spectra, Figs. 14 and 15, indicate that the resolution is too coarse
for all cases (no �5=3 range). The two-point correlation for Case
0:5Dx (Fig. 11), for example, shows that the largest scales are cov-
ered by some 16 cells which should be sufficient.

The energy spectra in Fig. 16 indicate that SGS dissipation is ac-
tive at relatively low wave numbers (the pile-up of energy at high
wavenumbers shows that the SGS dissipation is small at high
wavenumbers). To investigate this further, we will study the spec-
tra of the dissipation. The two-point correlation, BwwðẑÞ, is the in-
verse DFT of the symmetric energy spectrum, Eww, i.e.

Bwwðẑ=zmaxÞ ¼
XNz

kz¼1

EwwðkzÞ cos
2pðkz � 1Þðn� 1Þ

Nz

� �

where Nz is the number of cells in the spanwise direction; the nor-
malized spanwise separation distance appears at the right side as
ðn� 1Þ=Nz ¼ ẑ=zmax. ewz can—in theory—be obtained from (Hinze,
1975)

ewz ¼ 2m
@w0

@z

� �2
* +

¼ 2m
@2BwwðẑÞ
@ẑ2

�����
ẑ¼0

¼ 2m
XNz

kz¼1

j2
z EwwðkzÞ ð5Þ

where jz ¼ 2pðkz � 1Þ=zmax. However, this relation is not satisfied at
the discrete level, because the derivative @w0=@z cannot be evalu-
ated exactly in a finite-volume approach (the relation would have
been satisfied had we used a spectral method solving for the Fourier
coefficients), and thus

ewz;FV – 2m
XNz

kz¼1

j2
z Eww;FV ðkzÞ ð6Þ
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where subscript FV denotes finite volume. Instead, a DFT of @w0=@z
as

D̂zðkzÞ ¼
1
Nz

XNz

n¼1

@w0ðnÞ
@z

cos
2pðn� 1Þðkz � 1Þ

Nz

� ��

� i sin
2pðn� 1Þðkz � 1Þ

Nz

� ��
ð7Þ

must be formed where D̂z are the complex Fourier coefficients of
@w0=@z. Then the Power Spectral Density, i.e. D̂z � D̂�z , where super-
script � denotes complex conjugate, can be formed. Now indeed
(cf. Eq. (4))

ewz;FV ¼ ewz;exact ¼ 2m
XNz

kz¼1

D̂z � D̂�z ¼ 2m
XNz

kz¼1

PSDð@w0=@zÞ: ð8Þ

Figs. 17 and 18 present the energy spectra of the resolved veloc-
ity gradients @w0=@x and @w0=@z. As mentioned above, j2

x EwwðkxÞ
and PSDð@w0=@xÞ, and j2

z EwwðkzÞ and PSDð@w0=@zÞ, respectively,
should in theory be equal; as can be seen, the former are larger
than the latter. The discrepancy is in effect a measure of the inac-
curacy of the finite volume method in estimating a derivative, and
the error becomes larger for small spanwise scales (large spanwise
wavenumbers, jz). Although Eq. (5) is formally exact, the correct
way to create a spectrum of the computed results is to use Eqs.
(7) and (8). The reason is that, in Eqs. (7) and (8), the velocity gra-
dients are estimated in the same way as when predicting the flow,
whereas the velocity gradients in Eq. (5) are estimated with higher
accuracy (actually exactly) than when predicting the flow. Further-
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Fig. 18. Energy spectra of an exact and approximated spanwise component of viscous d
more, the predicted dissipation in the physical and spectral space
agrees when Eq. (7) is used, whereas they do not when Eq. (5) is
used.

It is commonly assumed that the major part of the SGS dissipa-
tion takes place close to the cut-off, i.e. at high resolved wavenum-
bers. Figs. 17a and 18a show that this is not the case at all. The
peaks of the resolved velocity gradients are located at kx; kz < 20.
This explains the strong decay in the energy spectra in Figs. 14–
16. For wavenumbers, kx, larger than 20, no dissipation takes place
for any resolution except for Case 0:5Dx, see Fig. 17a.

The dissipation energy spectra in the spanwise direction
show a large discrepancy at high wavenumbers between the ex-
act ones (Eqs. (7) and (8), Fig. 18a) and those computed from the
energy spectra of w0 (Eq. (5), Fig. 18b). This is an indication of
how poorly the velocity gradients are resolved for the higher
wavenumbers.

When the dissipation spectra presented above are plotted in the
center of the channel, they do not change a great deal except that
the peaks are shifted slightly towards lower wavenumbers.

Above, components of the energy spectra for the viscous dissipa-
tion (e.g. mð@w0=@zÞ2) rather than for the SGS dissipation (e.g.
mTð@w0=@zÞ2) are presented. The main reason for this is that it is
only for the viscous dissipation that Eq. (5), in theory, holds. Actu-
ally, the exact spectrum of mTð@w0=@zÞ2 has been computed (note
that in this case the Fourier coefficients in Eq. (7) are formed with
m0:5

T @w0=@z, whose physical meaning is somewhat obscure), and it is
found that the two energy spectra are very similar; one difference
is that, unlike for the viscous dissipation, the first Fourier mode is
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sipation versus streamwise wavenumber. y ¼ 0:11. For legend, see caption in Fig. 2.
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Fig. 19. Ratio of SGS dissipation due to resolved fluctuations in the wall-parallel
plane to the total one, see Eq. (9). For legend, see caption in Fig. 2.
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non-zero for the SGS dissipation because hm0:5
T @w0=@zi – 0 whereas

hm@w0=@zi ¼ 0.
Above we have only analyzed the dissipation spectra due to

spanwise and streamwise derivatives. One reason is that the span-
wise and streamwise components of the SGS dissipation make an
important contribution to the total one. Fig. 19 shows the ratio
of the SGS dissipation in the wall-parallel plane, e0SGS;xþz, to the total
SGS dissipation, e0SGS, where
Fig. 20. Transfer of kinetic turbulent energy between time-averaged, resolved, modelle
averaged kinetic and resolved turbukent kinetic energy, respectively. EI denotes interna
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Fig. 21. SGS dissipation due to resolved fluctuations,
e0SGS ¼ eSGS � ehSGSi ¼ mT
@�ui

@xj
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� �
� hmTi

@h�ui
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� �2

e0SGS;xþz ¼ mT
@�ui

@x1
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@x1
þ mT
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@x3
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@x3

� � ð9Þ

The contribution of e0SGS;xþz to e0SGS at yþ ’ 440 is close to 35% or
larger for all cases except Case 2Dz, see Fig. 19. Another reason why
we have not included the wall-normal derivative in the analyze in
Figs. 17 and 18 is that Eq. (5) does not hold for this derivative (x2 is
not an homogeneous direction).

Fig. 20 presents the flow of kinetic energy between the time-
averaged kinetic energy, h�uiih�uii=2, the resolved fluctuating kinetic
energy, hu0iu0ii=2, the modelled (SGS) kinetic energy, hkTi, and the
energy flow of all three kinetic energies down to the internal en-
ergy, EI , i.e. viscous dissipation. e denotes viscous dissipation at
the subgrid scales, i.e.

e ¼ m
@u0i;SGS

@xj

@u0i;SGS

@xj

� �
; kSGS ¼

1
2
hu0i;SGSu0i;SGSi ð10Þ

In steady RANS using an eddy-viscosity model the right circle
vanishes, and most of the energy flow goes from K to kT and only
a small fraction directly from K to EI (assuming low Mach number
flow). In a well-resolved LES, the energy transfers from K to kT and
the transfer from K to EI are negligible. In this case, the flow of ki-
netic energy goes from K to kres, and from kres to kT , and then to EI .
Only a small fraction goes from kres to EI .

From the discussion above in relation to Fig. 20, it is clear that
an indicator of how well the flow is resolved is a comparison of
d kinetic energy and internal energy. K ¼ 1
2 h�uiih�uii and kres ¼ 1

2 hu0iu0ii denote time-
l energy. e is viscous dissipation at subgrid scales, Eq. (10).
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e0SGS , see Eq. (9). For legend, see caption in Fig. 2.
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the modelled dissipation from K and kres. The modelled dissipation
in the kres equation is taken as e0SGS, see Eq. (9). Fig. 21 presents eSGS

and e0SGS. As expected, the SGS dissipation due to the time-averaged
flow dominates in the URANS region ðyþ < 125Þ near the wall, see
Fig. 21a. Further away from the wall (160 6 yþ 6 200, depending
on the resolution), the e0SGS=eSGS ratio becomes larger than one half
and is, for yþ > 800, larger than 0.9 for all cases. It can also be seen
in Fig. 21a that, the higher resolution, the higher the e0SGS=eSGS ratio;
however, when e0SGS is not normalized with eSGS (Fig. 21b), the pic-
ture is reversed, i.e. coarse resolution gives large e0SGS. The results in
Fig. 21b are partly explained by the high turbulent viscosity for the
coarse resolutions (Fig. 6) and partly by higher turbulent resolved
fluctuations. The correct approach is to present e0SGS in normalized
form (Fig. 21a) because, in this way, the influence of the back-
ground flow is minimized; the e0SGS presented in Fig. 21b are biased
by different mean flows, resolved turbulent fluctuations and SGS
viscosities.
4. Conclusions

Five different grid resolutions have been investigated: Baseline
ðDx;DzÞ, two cases with a refined grid (0:5Dx and 0:5Dz) and two
cases with a coarsened grid (2Dz and 2Dz). The resolution in the
streamwise direction lies in the interval 200 6 xþ 6 800 and
5 6 d=Dx 6 20 and in the spanwise direction 100 6 zþ 6 400 and
10 6 d=Dz 6 40.

From the two-point correlations we find by how many cells the
largest scales are resolved. This is very useful information. It is up
to the researcher/engineer to decide how many cells he/she deems
necessary, but the recommended minimum for a coarse LES should
be at least eight cells. Note that eight cells is usually very far from a
well-resolved LES. The two-point correlations presented in this
work reveal that the resolutions for Cases 2Dx and 2Dz are much
too coarse. Case 2Dz yields almost zero two-point correlation at a
separation distance of three cells. It is suggested that two-point
correlations in the poorest resolved direction (the spanwise direc-
tion in the present work) are suitable for estimating the resolution.

Pope (2004) suggests that if the ratio of the resolved turbulent
kinetic energy to the total (i.e. the resolved plus the modelled) is
larger than 80%, the LES simulation is well-resolved. The present
work indicates that this is not a good measure because, for all five
cases, this ratio is larger than 85%.

One-dimensional energy spectra obtained from the two-point
correlations have been presented. It is concluded that they are
not useful for estimating the resolution.

It is found that the resolved streamwise fluctuation and the re-
solved turbulent kinetic energy increase, and that the correlation
coefficient, h�u0v 0i=ðurmsv rmsÞ, decreases as the grid is coarsened
These phenomena are coupled to each other, since the time-aver-
aged flow must satisfy a linear variation of the total shear stress.
The correlation between u0 and v 0 is weakened when the grid is
coarsened, and the equations compensate for this by increasing
the product of urms and v rms.

The spanwise resolved fluctuation, wrms, and the wall-normal
one behave differently when the grid is refined and coarsened.
Their behavior is explained by their largest source terms, the pres-
sure velocity terms, �2hw0@p0=@zi (w2

rms equation) and �2hv 0@p0=@yi
(v2

rms equation). Hence, it is seems that it is vital to accurately cap-
ture the interaction of the fluctuating velocities and pressure. Pos-
sibly some work should be directed towards development of
discretization schemes which accurately treat the pressure–veloc-
ity coupling. Presumably, iterative solvers which treat pressure and
velocities in a segregated manner (such as pressure correction
schemes and fractional step techniques) are not optimal for accu-
rate treatment of the velocity–pressure coupling; fully coupled
solvers could be more accurate. Perhaps staggered grids could be
more accurate than collocated arrangement since they avoid the
Rhie–Chow interpolation. In fractional-step methods – as in the
present method – the Rhie–Chow dissipation term is not added
explicitly. It is, however, present implicitly, since the pressure gra-
dient after the momentum equations have been solved is first sub-
tracted from the velocity vector at the cell center and then, after
the pressure Poisson equation has been solved, it is added to the
velocity vector at the cell faces.

It is commonly assumed that the SGS dissipation takes place at
the highest wavenumbers. It is found that this is not true; the larg-
est dissipation takes place at rather small wavenumbers. One inter-
pretation is that the effective filter width is larger than the grid
spacing. As a result the velocity gradients are inaccurately com-
puted for scales close to cut-off.

Consider the spanwise direction. Since the flow is homogeneous
(i.e. periodic) in this direction, the spectral spanwise component of
the spanwise viscous dissipation, ewz, can, according to the theory
be computed from ewzðjzÞ ¼ j2

z Eww. It is found that this is different
from the viscous dissipation component, ewz;FV , computed from the
definition using finite volume discretization. The discrepancy
arises because the derivative @w0=@z appearing in ewz is computed
analytically, whereas ewz;FV is obtained in the finite volume proce-
dure by computing the derivative @w0=@z numerically. Thus, the
difference between ewz;FV and ewz is a measure of the inaccuracy
of finite volume methods. The spectral difference is largest at the
highest wavenumbers, because the numerical errors when com-
puting these derivatives are the largest.

The final part of the paper investigates the ratio of the SGS dis-
sipation due to resolved fluctuating strain rates to the total, i.e
e0SGS=eSGS. It is found that, in the LES region, this ratio lies between
0.5 and 0.9 for the fine meshes. It decreases when the grid is coars-
ened. It can be noted that in homogeneous decaying turbulence,
this ratio is by definition equal to one which indicates that it
may not be an optimal parameter for estimating LES resolution.
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